11

Assessing the Quality of
Risk Measures

VaR has been subjected to much criticism. In the previous chapter, we
reviewed the sharpest critique: that the standard normal return model
underpinning most VaR estimation procedures is simply wrong. But there
are other lines of attack on VaR that are relevant even if VaR estimates
are not based on the standard model. This chapter discusses three of these
viewpoints:

1. The devil is in the details: Subtle and not-so-subtle differences in how
VaR is computed can lead to large differences in the estimates.

2. VaR cannot provide powerful tests of its own accuracy.

3. VaR is “philosophically” incoherent: It cannot do what it purports to
be able to do, namely, rank portfolios in order of riskiness.

We will also discuss a pervasive basic problem with all models, including
risk models: The fact that they can err or be used inappropriately. A further
major critique, the putative potential for VaR to exacerbate systemic risk, is
discussed in Chapter 14.

11.1 MODEL RISK

In Chapter 10, we focused on the basic modeling problem facing VaR, that
the actual distribution of returns doesn’t conform to the model assumption
of normality under which VaR is often computed. Using a VaR implemen-
tation that relies on normality without appreciating the deviations of the
model from reality is an example of model risk. Models are used in risk
measurement as well as in other parts of the trading and investment process.
The term “model risk” describes the possibility of making incorrect trading
or risk management decisions because of errors in models and how they are
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applied. Model risk can manifest itself and cause losses in a number of ways.
The consequences of model error can be trading losses, as well as adverse
legal, reputational, accounting, and regulatory results.

All social science models are “wrong,” in the sense that model assump-
tions are always more or less crude approximations to reality. In Friedman’s
(1953) view on the methodology of economics, deviation from reality is a
virtue in a model, because the model then more readily generates testable hy-
potheses that can be falsified empirically, adding to knowledge. We encoun-
tered an example of this in the previous chapter. The so-called Black-Scholes
biases provide very useful insights into return behavior, and yet are defined
as violations of the model predictions. A model may, however, be inherently
wrong, in that it is based on an incorrect overall view of reality. The data
inputs can be inaccurate, or may be inappropriate to the application.

Error can be introduced into models in any number of ways. A seem-
ingly trivial channel, but one that can have large consequences, is that the
programming of a model algorithm can contain bugs. An example occurred
in the ratings process for structured credit products, and was revealed during
the subprime crisis. The press reported in May 2008 that Moody’s had incor-
rectly, given their own ratings methodology, assigned AAA ratings to certain
structured credit products using materially flawed programming. Another
example occurred when AXA Rosenberg Group LLC, an asset-management
subsidiary of the French insurance company AXA, using a quantitative in-
vestment approach, discovered a programming error in its models that had
likely induced losses for some investors.!

These episodes also provide examples of the linkages between different
types of risk. In the Moody’s case, the model risk was closely linked to
the reputational and liquidity risks faced by Moody’s. The error had been
discovered by Moody’s before being reported in the press, but had coincided
with changes in the ratings methodology for the affected products, and
had not resulted in changes in ratings while still known only within the
firm. Moody’s therefore, once the bugs became public knowledge, came
under suspicion of having tailored the ratings model to the desired ratings,
tarnishing its reputation as an objective ratings provider. Within a few days
of the episode being reported, S&P placed Moody’s-issued commercial paper
on negative watch, illustrating the economic costs that reputational risk
events can cause. In the AXA Rosenberg episode, the discovery of the error
had not been communicated in a timely fashion to investors, resulting in

'On Moody’s, see Sam Jones, Gillian Tett, and Paul J. Davies, “CPDOs expose
ratings flaw at Moody’s,” Financial Times, May 20, 2008. On AXA Rosenberg, see
Jean Eaglesham and Jenny Strasburg, "Big Fine Over Bug in ‘Quant’ Program,” Wall
Street Journal, Feb. 4, 2011.
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loss of assets under management, an SEC fine, and considerable overall
reputational damage.

Even when software is correctly programmed, it can be used in a way
that is inconsistent with the model that was intended to be implemented in
the software. One type of inconsistency that arises quite frequently concerns
the mapping of positions to risk factors, which we’ll discuss in a moment.
Such inconsistencies can contribute to differences in VaR results.

11.1.1 Valuation Risk

Model errors can occur in the valuation of securities or in hedging. Errors
in valuation can result in losses that are hidden within the firm or from
external stakeholders. A portfolio can be more exposed to one or more risk
factors than the portfolio manager realizes because of hedging errors.

Valuation errors due to inaccurate models are examples of market risk
as well as of operational risk. As a market risk phenomenon, they lead, for
example, to buying securities that are thought to be cheaply priced in the
market, but are in fact fairly priced or overpriced. As an operational risk phe-
nomenon, the difficulty of valuing some securities accurately makes it pos-
sible to record positions or trades as profitable that have in fact lost money.

Model errors can, in principle, be avoided and valuation risk reduced,
by relying on market prices rather than model prices. There are several prob-
lems with this approach of always marking-to-market and never marking-
to-model. Some types of positions, such as longer-term bank commercial
loans, have always been difficult to market-to-market because they do not
trade frequently or at all, and because their value is determined by a com-
plex internal process of monitoring by the lender. Accounting and regulatory
standards mandating marking such positions to market have been held re-
sponsible by some for exacerbating financial instability, an issue we discuss
in Chapter 14.

11.1.2 Variability of VaR Estimates

VaR also faces a wide range of practical problems. To understand these
better, we’ll first briefly sketch the implementation process for risk compu-
tation. This entire process and its results are sometimes referred to as the
firm’s “VaR model.” We’ll then discuss how implementation decisions can
lead to differences in VaR results.

Risk management is generally carried out with the aid of computer
systems that automate to some extent the process of combining data and
computations, and generating reports. Risk-measurement systems are avail-
able commercially. Vendor systems are generally used by smaller financial
firms. Large firms generally build their own risk-measurement systems, but
may purchase some components commercially.
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One particular challenge of implementing risk-measurement systems is
that of data preparation. Three types of data are involved:

Market data are time series data on asset prices or other data that we
can use to forecast the distribution of future portfolio returns. Ob-
taining appropriate time series, purging them of erroneous data
points, and establishing procedures for handling missing data, are
costly but essential for avoiding gross inaccuracies in risk measure-
ment. Even with the best efforts, appropriate market data for some
exposures may be unobtainable.

Security master data include descriptive data on securities, such as ma-
turity dates, currency, and units. Corporate securities such as eq-
uities and, especially, debt securities present particular challenges
in setting up security master databases. To name but one, issuer
hierarchy data record which entity within a large holding company
a transaction is with. Such databases are difficult to build and main-
tain, but are extremely important from a credit risk management
point of view. Netting arrangements, for example, may differ for
trades with different entities. Such issues become crucial if coun-
terparties file for bankruptcy. Chapter 6 discussed one important
example from the subprime crisis: Recovery by Lehman’s coun-
terparties depended in part on which Lehman subsidiary they had
faced in the transactions.

Position data must be verified to match the firm’s books and records.
Position data may have to be collected from many trading systems
and across a number of geographical locations within a firm.

To compute a risk measure, software is needed to correctly match up
this data, and present it to a calculation engine. The engine incorporates all
the formulas or computation procedures that will be used, calling them from
libraries of stored procedures. The calculations have to be combined with
the data appropriately. Results, finally, must be conveyed to a reporting
layer that manufactures documents and tables that human managers can
read. All of these steps can be carried out in myriad ways. We focus on two
issues, the variability of the resulting measures, and the problem of using
data appropriately.

The computation process we’ve just described applies to any risk mea-
sure, not just to VaR, but for concreteness, we focus on VaR. The risk
manager has a great deal of discretion in actually computing a VaR. The
VaR techniques we described in Chapter 3—modes of computation and
the user-defined parameters—can be mixed and matched in different ways.
Within each mode of computation, there are major variants, for exam-
ple, the so-called “hybrid” approach of using historical simulation with



Assessing the Quality of Risk Measures 397

exponentially weighted return observations. This freedom is a mixed bless-
ing. On the one hand, the risk manager has the flexibility to adapt the way
he is calculating VaR to the needs of the firm, its investors, or the nature of
the portfolio. On the other hand, it leads to two problems with the use of
VaR in practice:

1. There is not much uniformity of practice as to confidence interval and

time horizon; as a result, intuition on what constitutes a large or small

VaR is underdeveloped.

Different ways of measuring VaR would lead to different results, even

if there were standardization of confidence interval and time horizon.

There are a number of computational and modeling decisions that can

greatly influence VaR results, such as

— Length of time series used for historical simulation or to estimate
moments

— Technique for estimating moments

— Mapping techniques and the choice of risk factors, for example, ma-
turity bucketing

— Decay factor if applying EWMA

— In Monte Carlo simulation, randomization technique and the number
of simulations

N

Dramatic changes in VaR can be obtained by varying these parame-
ters. In one well-known study (Beder, 1995), the VaRs of relatively simple
portfolios consisting of Treasury bonds and S&P 500 index options were
computed using different combinations of these parameters, all of them well
within standard practice. For example, 100 or 250 days of historical data
might be used to compute VaR via historical simulation, or Monte Carlo
VaR might be computed using different correlation estimates. For a given
time horizon and confidence level, VaR computations differed by a factor of
six or seven times. Other oddities included VaR estimates that were higher
for shorter time horizons.

A number of large banks publish VaR estimates for certain of their port-
folios in their annual reports, generally accompanied by backtesting results.
These VaR estimates are generated for regulatory purposes, as discussed in
Chapter 15. Perusing these annual reports gives a sense of how different
the VaR models can be, as they use inconsistent parameters and cannot be
readily compared.

11.1.3 Mappiny Issues

Mapping, the assignment of risk factors to positions, can also have a large
impact on VaR results. We discussed mapping, and the broad choices risk
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managers can make, in Chapter 5. Some decisions about mapping are prag-
matic choices among alternatives that each have their pros and cons. An
example is the choice between cash flow versus duration-convexity mapping
for fixed-income. Cash flow mappings are potentially more accurate than
duration mappings, since, in the former, each cash flow is mapped to a fixed
income security with a roughly equal discount factor, to which the latter is
clearly only an approximation. But cash flow mapping requires using many
more risk factors and more complex computations, which are potentially
more expensive and entail risks of data errors and other model risks.

In other cases, it may be difficult to find data that address certain risk
factors. Such mapping problems may merely mirror the real-world difficul-
ties of hedging or expressing some trade ideas. An example is the practice,
said to be widespread prior to the subprime crisis, of mapping residential
mortgage-backed securities (RMBS) and other securitized credit products to
time series for corporate credit spreads with the same rating. Market data
on securitization spreads generally is sparse, available only for very generic
types of bonds and hard to update regularly from observed market prices.
Figure 14.14 and the discussion in Chapter 14 illustrate how misleading
such a mapping to a proxy risk factor could be. Prior to the crisis, the
spread volatility of investment-grade securitizations was lower than those of
corporate bonds with similar credit ratings. Yet during the financial crisis,
spreads on securitizations widened, at least relatively, far more than corpo-
rate spreads. This episode illustrates not only the model risks attendant on
proxy mapping, but also the inefficacy of VaR estimates in capturing large
moves in market prices and the importance of stress testing.

Another example is convertible bond trading. As we saw in Chapter 10,
convertible bonds can be mapped to a set of risk factors including, among
others, implied volatilities, interest rates, and credit spreads. Such mappings
are based on the theoretical price of a convertible bond, which is arrived
at using its replicating portfolio. However, at times theoretical and market
prices of converts can diverge dramatically, as can be seen in Figure 12.2.
These divergences are liquidity risk events that are hard to capture with
market data, so VaR based on the replicating portfolio alone can drastically
understate risk. This problem can be mitigated through stress testing, which
is discussed in Chapter 13.

In some cases, a position and its hedge might be mapped to the same risk
factor or set of risk factors. The mapping might be justified on the grounds
that the available data do not make it possible to discern between the two
closely related positions. The result, however, will be a measured VaR of
zero, even though there is a significant basis risk; that is, risk that the hedge
will not provide the expected protection. Risk modeling of securitization
exposures provides a pertinent example of basis risk, too. Securitizations
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are often hedged with similarly-rated corporate CDS indexes. If both the
underlying exposure and its CDX hedge are mapped to a corporate spread
time series, the measured risk disappears. We discuss basis risk further in
Chapter 13.

For some strategies, VaR can be misleading for reasons over and above
the distribution of returns and VaR’s dependence on specific modeling
choices. For some strategies, outcomes are close to binary. One example
is event-driven strategies, a broad class of strategies that includes trades that
depend on the occurrence of terms of a corporate acquisition or merger, the
outcome of bankruptcy proceedings, or of lawsuits. For many such trades,
there is no historical time series of return data that would shed light on the
range of results. Another example are dynamic strategies, in which the risk
is generated by the trading strategy over time rather than the set of posi-
tions at a point in time. We present some tools for treating the risks of such
strategies in Chapter 13.

11.1.4 CGase Study: The 2005 Credit
Correlation Episode

An episode of volatility in the credit markets that occurred in the late spring
of 2005 provides a case study of model risk stemming from misinterpreta-
tion and misapplication of models. Some traders suffered large losses in a
portfolio credit trade in which one dimension of risk was hedged in accor-
dance with a model, while another dimension of risk was neglected. We start
by reviewing the mechanics of the trade, which involved credit derivatives
based on CDX.NALIG, the investment grade CDS index.

Description of the Trade and Its Motivation A widespread trade among
hedge funds, as well as proprietary trading desks of banks and broker-
ages, was to sell protection on the equity tranche and buy protection on
the junior mezzanine tranche of the CDX.NA.IG. The trade was thus long
credit and credit-spread risk through the equity tranche and short credit
and credit-spread risk through the mezzanine. It was executed using several
CDX.NA.IG series, particularly the IG3 introduced in September 2004 and
the IG4 introduced in March 2005.

The trade was designed to be default-risk-neutral at initiation, by sizing
the two legs of the trade so that their credit spread sensitivities were equal.
The motivation of the trade was not to profit from a view on credit or credit
spreads, though it was primarily oriented toward market risk. Rather, it was
intended to achieve a positively convex payoff profile. The portfolio of two
positions would then benefit from credit spread volatility. In addition, the
portfolio had positive carry; that is, it earned a positive net spread. Such
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trades are highly prized by traders, for whom they are akin to delta-hedged
long option portfolios in which the trader receives rather than paying away
time value. Compare this to the situation depicted in Figure 4.3. As we’ll see,
the trade was also a short credit dispersion trade, analogous to the equity
dispersion trades discussed in the last chapter.

To understand the trade and its risks, we can draw on the tools we
developed in Chapter 9. The securities in the extened example of that chapter
are similar enough in structure to the standard tranches of the CDX.NA.IG
that we can mimic the trade and understand what went wrong. Let’s set up a
trade in tranches of Chapter 9’s illustrative CLO that is similar in structure
and motivation to the standard tranche trade we have been describing.
The trade takes a long credit risk position in the equity tranche and an
offsetting short credit position in the mezzanine bond. Bear in mind that we
would unlikely be able, in actual practice, to take a short position in a cash
securitization, since the bond would be difficult to locate and borrow. We
might be able to buy protection on the mezzanine tranche through a CDS,
but the dealer writing it would probably charge a high spread to compensate
for the illiquidity of the product and the difficulty of hedging it, in addition
to the default and correlation risk. The standard tranches are synthetic CDS
and their collateral pools also consist of CDS. They are generally more liquid
than most other structured products, so it is easier to take short as well as
long positions in them.

To determine the hedge ratio, that is, the amount of the mezzanine
we are to short, we use the default sensitivities, the defaultO1s. These are
credit-risk sensitivities, while the 2005 CDX trade employed market-risk
sensitivities, the spread01s. But the mechanics of hedging are similar. We
assume that, at the time the trade is initiated, the expected default rate
and implied correlation are 7 = 0.03 and p = 0.30. The default01 of a
$1,000,000 notional position in the equity is —$6,880. The default01 of
the mezzanine is —0.07212 times the notional value, so the defaultO1 of a
$1,000,000 notional position is —$721. These values can be read off of Fig-
ure 9.5 or Table 9.5. With a hedge ratio of about 9.54—that is, by shorting
$9,540,000 of par value of the mezzanine for every $1,000,000 notional of
long equity—we create a portfolio that, at the margin, is default-risk neutral.

Figure 11.1 illustrates how the trade was set up. At a default rate of
0.003, the portfolio has zero sensitivity to a small rise or decline in defaults.
But the trade has positive convexity. The equity cheapens at a declining rate
in response to spread widening. A noteworthy feature is that, because at
low default rates, the mezzanine tranche has negative convexity, the short
position adds positive convexity to the portfolio. The trade benefits from
changes in the default rate in either direction. The actual CDX trade bene-
fitted from large credit spread changes. It behaved, in essence, like an option
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FIGURE 11.1 Convexity of CLO Liabilities

The graph plots the P&L, for varying default rates, of a portfolio consisting of (1) a
long credit position in the equity tranche of the CLO described in Chapter 9 with a
notional amount of $1,000,000, and (2) a short credit position in the mezzanine
tranche of the same CLO with a notional amount of $1,000,000 times the hedge
ratio of 9.54, that is, a par value of $9,540,000. The P&Ls of the constituent
positions are also plotted. The default rates vary in the graph, but the correlation is
fixed at 0.30. That is, the hedge ratio is set at a default rate of 3 percent, and a
correlation of 0.30, but only the default rate is permitted to vary in the plot. The
default rates are measured on the horizontal axis as decimals. The P&L is expressed
on the vertical axis in millions of dollars.

straddle on credit spreads. In contrast to a typical option, however, this
option, when expressed using the CDX standard tranches at the market
prices prevailing in early 2005, paid a premium to its owner, rather than
having negative net carry.

In the actual standard tranche trade, the mechanics were slightly differ-
ent. Since the securities were synthetic CDO liabilities, traders used spread
sensitivities; that is, spread01s or risk-neutral defaultO1s, rather than actuar-
ial defaultO1s. The sensitivities used were not to the spreads of the underlying
constituents of the CDX.NA.IG, but to the tranche spread. The hedge ratio
in the actual trade was the ratio of the P&L impact of a 1bp widening of
CDX.NA.IG on the equity and on the junior mezzanine tranches. The hedge
ratio was between 1.5 and 2 at the beginning of 2005, lower than our ex-
ample’s 9.54, and at the prevailing tranche spreads, resulted in a net flow of
spread income to the long equity/short mezz trade. However, the trade was
set up at a particular value of implied correlation. As we will see, this was
the critical error in the trade.



402 FINANCIAL RISK MANAGEMENT

One additional risk should be highlighted, although it did not in the end
play a crucial role in the episode we are describing: The recovery amount
was at risk. In the event of a default on one or more of the names in the
index, the recovery amount was not fixed but a random variable.

The Credit Environment in Early 2005 In the spring of 2005, the credit
markets came under pressure, focused on the automobile industry, but not
limited to it. The three large U.S.-domiciled original equipment manufac-
turers (OEMs), Ford, General Motors (GM), and Chrysler, had long been
troubled. For decades, the OEMs had been among the most important com-
panies in the U.S. investment-grade bond market, both in their share of
issuance and in their benchmark status. The possibility of their being down-
graded to junk was new and disorienting to investors. They had never been
constituents of the CDX.NAL.IG, but two “captive finance” companies, Gen-
eral Motors Acceptance Co. (GMAC) and Ford Motor Credit Co. (FMCC),
were.

A third set of companies at the core of the automotive industries were
the auto parts manufacturers. Delphi Corp. had been a constituent of 1G3,
but had been removed in consequence of its downgrade below investment
grade. American Axle Co. had been added to 1G4.

From a financial standpoint, the immediate priority of the OEMs had
been to obtain relief from the UAW auto workers union from commitments
to pay health benefits to retired workers. The “hot” part of the 2005 crisis
began with two events in mid-April, the inability of GM and the UAW to
reach an accord on benefits, and the announcement by GM of large losses.
On May 5, GM and Ford were downgraded to junk by S&P. Moody’s did
the same soon after. The immediate consequence was a sharp widening of
some corporate spreads, including GMAC and FMCC and other automotive
industry names. Collins and Aikman, a major parts manufacturer, filed for
Chapter 11 protection from creditors in May. Delphi and Visteon, another
large parts manufacturer, filed later in 2005.

The two captive finance arms and the two auto parts manufacturers
American Axle and Lear together constituted 4 out of the 125 constituents
of the IG4. The market now contemplated the possibility of experiencing
several defaults in the IG3 and 1G4. The probability of extreme losses in the
IG3 and 1G4 standard equity tranches had appeared to be remote; it now
seemed a distinct possibility. Other credit products also displayed sharp
widening; the convertible bond market, in particular, was experiencing one
of its periodic selloffs, as seen in Figure 12.2.

The automotive and certain other single-name spreads widened sharply,
among them GMAC and FMCC. The IG indexes widened in line with the
widening in their constituents, many of which did not widen at all. The
pricing of the standard tranches, however, experienced much larger changes,
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brought about by the panicky unwinding of the equity-mezzanine tranche
trade. Figure 11.3 shows the behavior of credit spreads and the price of the
standard equity tranche during the episode.

® The mark-to-market value of the equity tranche dropped sharply. This
can be seen in the increase in points upfront that buyers of protection
had to pay.

® The implied correlation of the equity tranche dropped sharply. Stated
equivalently, its mark-to-market value dropped more and its points
upfront rose more sharply than the widening of the IG 4 spread alone
would have dictated.

® The junior mezzanine tranche experienced a small widening, and at
times even some tightening, as market participants sought to cover po-
sitions by selling protection on the tranche, that is, taking on long credit
exposures via the tranche.

® The relative value trade as a whole experienced large losses.

The implied correlation fell for two reasons. The automotive parts sup-
plier bankruptcies had a direct effect. All were in the IG4, which meant that
about 10 percent of that portfolio was now near a default state. But the
correlation fell also because the widening of the IG 4 itself was constrained
by hedging. The short-credit position via the equity tranche could be hedged
by selling protection on a modest multiple of the mezzanine tranche, or a
large multiple of the IG4 index. Although spreads were widening and the
credit environment was deteriorating, at least some buyers of protection on
the 1G4 index found willing sellers among traders long protection in the
equity tranche who were covering the short leg via the index as well as via
the mezzanine tranche itself.

Modeling Issues in the Setup of the Trade The relative value trade was
set up in the framework of the standard copula model, using the analytics
described in Chapter 9. These analytics were simulation-based, using risk-
neutral default probabilities or hazard-rate curves derived from single-name
CDS. The timing of individual defaults was well modeled. Traders generally
used a normal copula. The correlation assumption might have been based
on the relative frequencies of different numbers of joint defaults, or, more
likely, on equity return correlations or prevailing equity implied correlations,
as descriped at the end of Chapter 10.

In any event, the correlation assumption was static. This was the critical
flaw, rather than using the “wrong” copula function, or even the “wrong”
value of the correlation. The deltas used to set the proportions of the
trade were partial derivatives that did not account for changing correla-
tion. Changing correlation drastically altered the hedge ratio between the
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FIGURE 11.2 Correlation Risk of the Convexity Trade

The graph plots the P&L of the convexity trade for default rates from 0.0075 to
0.0825 per annum and constant pairwise Gaussian copula correlations from 0.0 to
0.5. The P&L is expressed on the vertical (z) axis in millions of dollars.

equity and mezzanine tranches, which more or less doubled to nearly 4 by
July 2005. In other words, traders needed to sell protection on nearly twice
the notional value of the mezzanine tranche in order to maintain spread
neutrality in the portfolio.

Figure 11.2 displays the P&L profile of the trade for different spreads
and correlations, again using the CLO example of Chapter 9. The port-
folio P&L plotted as a solid line in Figure 11.1 is a cross-section through
Figure 11.2 at a correlation of 0.30. Figure 11.2 shows that the trade was
profitable for a wide range of spreads, but only if correlation did not fall. If
correlation fell abruptly, and spreads did not widen enough, the trade would
become highly unprofitable.

The model did not ignore correlation, but the trade thesis focused on
anticipated gains from convexity. The flaw in the model could have been
readily corrected if it had been recognized. The trade was put on at a time
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FIGURE 11.3 Implied Correlation in the 2005 Credit Episode

The graph plots the implied or base correlation of the equity (0-3 percent) tranche
(solid line, percent, left axis), the price of the equity tranche (dashed line, points
upfront, right axis), and the CDX IG 4 spread (dotted line, basis points, right axis).
Source: JPMorgan Chase.

when copula models and the concept of implied correlation generally had
only recently been introduced into discussions among traders, who had not
yet become sensitized to the potential losses from changes in correlation.
Stress testing correlation would have revealed the risk. The trade could also
have been hedged against correlation risk by employing an overlay hedge:
that is, by going long single-name protection in high default-probability
names. In this sense, the “arbitrage” could not be captured via a two-leg
trade, but required more components.

11.1.5 Case Study: Subprime Default Models

Among the costliest model risk episodes was the failure of subprime resi-
dential mortgage-based security (RMBS) valuation and risk models. These
models were employed by credit-rating agencies to assign ratings to bonds,
by traders and investors to value the bonds, and by issuers to structure them.
While the models varied widely, two widespread defects were particularly
important:

® In general, the models assumed positive future house price appreciation
rates. In the stress case, house prices might fail to rise, but would not
actually drop. The assumption was based on historical data, which was
sparse, but suggested there had been no extended periods of falling
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house prices on a large scale in any relevant historical period. As can be
seen in Figure 15.1, house prices did in fact drop very severely starting in
2007. Since the credit quality of the loans depended on the borrowers’
ability to refinance the loans without additional infusions of equity,
the incorrect assumption on house price appreciation led to a severe
underestimate of the potential default rates in underlying loan pools in
an adverse economic scenario.

® Correlations among regional housing markets were assumed to be low.
Bonds based on pools of loans from different geographical regions were
therefore considered well-diversified. In the event, while house prices fell
more severely in some regions than others, they fell—and loan defaults
were much higher than expected in a stress scenario—in nearly all.

Together, these model errors or inappropriate parameters led to a sub-
stantial underestimation of the degree of systematic risk in subprime RMBS
returns. Once the higher-than-expected default rates began to materialize,
the rating agencies were obliged to downgrade most RMBS. The large-
scale downgrades of AAA RMBS were particularly shocking to the mar-
kets, as it was precisely these that revealed the extent to which systemic
risk had been underestimated and mispriced. As of the end of 2009, about
45 percent of U.S. RMBS with original ratings of AAA had been downgraded
by Moody’s.?

The inaccuracy of rating agency models for subprime RMBS is a com-
plex phenomenon with a number of roots. As noted in Chapter 6, some
observers have identified the potential conflict of interest arising from com-
pensation of rating agencies by bond issuers as a factor in driving ratings
standards lower. Others have focused on reaching for yield and the high
demand for highly rated bonds with even modestly higher yields.

As we saw earlier in this chapter, a number of instances of mapping prob-
lems, contributing to seriously misleading risk measurement results, arose in
securitization and structured credit products. Up until relatively recently, lit-
tle time-series data was available covering securitized credit products. Highly
rated securitized products were often mapped to time series of highly rated
corporate bond spread indexes in risk measurement systems, or, less fre-
quently, to the ABX index family, introduced in 2006. VaR measured using
such mappings would have indicated that the bonds were unlikely under
any circumstances to lose more than a few points of value. As can, however,
be seen in Figure 11.4, the ABX index of the most highly rated RMBS lost
70 percent of their value during the subprime crisis. Somewhat lower, but

2See Moody’s Investors Service (2010), p. 19.
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FIGURE 11.4 ABX Index of RMBS Prices

Rolling indexes of AAA, A, and BBB- ABX. For each index, the graph displays the
most recent vintage.

Source: JPMorgan Chase.

still investment-grade RMBS lost almost all their value. As we will see in
Chapter 14, securitizations suffered far greater losses than corporate bonds.
Losses varied greatly by asset class, the year in which they were issued, or
“vintage,” and position in the capital structure. The corporate-bond and
ABX mappings were highly misleading and would have understated po-
tential losses by several orders of magnitude for investment-grade bonds.
Similar issues arose for CMBS, and their relationship to the ratings curves
and the CMBX, an index of CMBS prices analogous to the ABX.

11.2 BACKTESTING OF VAR

Assessing the accuracy of VaR estimates is important not only because firms
may rely on it to assess risk, but also because, as we describe in more detail
in Chapter 15, the international regulatory framework relies on it to set
bank capital requirements, and to assess how accurately banks assess risk.
We discuss the role of VaR in the regulatory framework in that chapter. For
now, we set out some of the issues involved in assessing VaR accuracy and
give some examples of the statistical techniques used.

We focus on the standard model, in which the portfolio return is nor-
mally distributed with a mean of zero. We can test VaR estimates from two
points of view:
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1. The first is to test the estimated standard deviation of the portfolio
return, treating it as a type of parameter test. This approach is relevant
only if we have estimated a parametric or Monte Carlo VaR. If we have
estimated VaR by historical simulation, there is no return volatility
to test.

Statistically, setting the mean return to zero is a strong assumption,
but it allows one to focus on the well-known problem of putting a
confidence interval around a standard deviation estimate, rather than
the much less well-known problem of jointly testing estimates of the
mean and standard deviation of a distribution.

2. The second approach to assessing VaR accuracy studies the per-
formance of the VaR rather than the accuracy of the parameters.
This backtesting approach focuses on how often the portfolio return
falls below the VaR. Such an event is often called an excession. The
backtesting approach focuses on the VaR model itself, rather than its
constituent hypotheses. In this context, “VaR model” doesn’t mean
the distributional hypothesis underpinning the VaR, say, normally
distributed returns. Rather, it refers to the entire process, described
earlier, from data gathering and position capture to implementation
and reporting. Backtesting is therefore applicable to VaR estimates
derived using historical as well as Monte Carlo simulation.

Several standard backtests are available. They are developed in the con-
text of classical statistical hypothesis testing, summarized in Appendix A.4.
In our context, the null hypothesis is a specific statement about the statistical
distribution of excessions. The null hypothesis underpinning most backtest-
ing, and the regulatory framework, is based on the idea that, if the model is
accurate, then the proportion of excessions should be approximately equal
to one minus the confidence level of the VaR.

Suppose we have a VaR estimation procedure that produces t—period

VaR estimates with a confidence level a. To simplify, we’ll set 7 = WL

that is, a one-day VaR. We also assume that the VaR estimates are being
generated in such a way that the estimates made in different periods are
independent draws from the same distribution. That is, we assume not
only an unchanging distribution of risk factor returns, but also that we’re
not changing the VaR estimation procedure in a way that would change
the distribution of results. Excessions are then binomially distributed. The
confidence level parameter o takes on the role of the event probability.

If the VaR model is accurate, then, by definition, the probability p of
an excession in each period is equal to 1 — «, where « is the confidence level
of the VaR, say, 99 percent. Therefore, if the VaR model is accurate, the
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probability of observing x excessions in T periods, given by the binomial

distribution, is
<T> (1-— O[)xaT—x
x

and one would expect the proportion of exceedances in the sequence of VaR
estimates to equal 1 — a:

A formal test takes as the null hypothesis $ : p = 1 — a. The log like-
lihood ratio test statistic is

2 {log [(%) (1- ;)H} ~log[(1 — ot)xoch]}

What does this expression mean? If the null hypothesis is true, then, on the
one hand, we expect F to be fairly close to 1 —« and the test statistic to
be fairly close to zero. On the other hand, we recognize that because of
random error, it’s very unlikely for % to be exactly 1 — . Under the null
hypothesis, this test statistic is asymptotically distributed as a x2-variate
with one degree of freedom (for the one parameter «). This distribution
has most of its weight near zero, but a long right tail, as can be seen in
Figure 11.5; increasing the degrees of freedom even moderately pushes the
distribution away from zero. Using this distribution to carry out the test is
intuitive, since a fraction of excessions different from the expected value,
equal to one minus the confidence level, pushes our test statistic away from
zZero.

Some examples of specific interesting questions we can try to answer in
this framework are:

® We can set a specific probability of a Type I error (false positive), that
is, rejecting §o even though it is true, and determine an acceptance/non-
rejection region for x, the number of excessions we observe. The proba-
bility of a Type Lerror is set to a level “we can live with.” The acceptance
region will depend on the sample size, that is the number of periods we
observe the VaR model at work. The region has to be a range of integers.
For example, if o = 0.99, and we observe the VaR for 1,000 trad-
ing days, we would expect to see about 10 excessions. If we set the
probability of a Type I error at 5 percent, the acceptance region for )
isx e (4,17).
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FIGURE 11.9 Chi-Square Distribution

Cumulative distribution functions of chi-square distributions with 1 and 4 degrees
of freedom. The grid lines mark the 95th and 99th percentiles of the chi-square
distribution with 1 df, equal to 3.841 and 6.635.

If instead we set @ = 0.95 and T = 1,000, but keep the probability
of a Type I error at 5 percent, the acceptance region for g is x €
(37,65). We expect to see a higher fraction of excessions—days on
which trading losses exceed the VaR—at a lower VaR confidence level,
but the range within which we feel comfortable concluding that the null
has not been rejected is also wider.

® We can assess the probability of a Type II error (false negative), that is,
nonrejection of $)y even though a specific alternative hypothesis $1 is
true. This test will be a function of the probability of a Type I error, a, T,
and the alternative hypothesis. For example, if the probability of a Type
I error is fixed at 5 percent, @« = 0.99, T = 1,000, and 9, : p = 0.02,
then there is a 21.8 percent probability of a Type Il error.

These examples show how inaccurate VaR can be. Setting T = 1,000
corresponds to almost four years of data. And after four years, we cannot
reject the accuracy of a 99 percent daily VaR (Type I error) even if we
observe as few as 60 percent less or as many as 70 percent more than the
expected 10 excessions. And if the true probability of an excession is 2
percent, there is still over a 20 percent chance of mistakenly accepting the
lower probability (Type II error), even after watching our VaR model in
action for four years.
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FIGURE 11.6 Backtest of a Normal Distribution

Simulation of 1,000 sequential steps of a geometric Brownian motion process with
u = 0and o = 0.25 at an annual rate. The horizontal grid line marks the 0.01
quantile. There should be about 10 occurrences of returns below the grid lines. In
this simulation, there are nine.

To provide more intuition on this test, let’s look at two examples.
In both examples, we look at the return series rather than a VaR, but
this is just a convenient simplification: It would be trivial to multiply each
return series by the number of units of a linear asset to get a VaR. In the
terminology of Chapter 3, we are looking here at the VaR shock rather than
the VaR.

The first example is a normal distribution. We know for this distribu-
tion that the null hypothesis is true. Figure 11.6 shows 1,000 simulation
from a normal distribution with mean zero and an annual volatility of
25 percent. There happen to be nine outliers. The value of the likelihood
ratio test statistic is 0.103, quite close to zero and well below either the 95th
or 99th percentiles of the x? distribution. We therefore do not reject the null
hypothesis that the probability of a loss exceeding the VaR shock equals the
confidence level of the VaR. If there had been 20 excessions, the test statistic
would equal 7.827, well in excess of the critical values, and we would reject
the null.

The second example is a VaR estimated using the historical simulation
approach and time series data for the dollar-yen exchange rate and the S&P
500. We compute VaR shocks for each return series on its own, not as a
portfolio. We use daily return data from January 2, 1996, through Novem-
ber 10, 2006, so the number of VaR observations is 2,744. Figure 11.7
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FIGURE 11.7 Likelihood-Ratio Test

Value of the likelihood ratio test statistic for the null hypothesis 3 : p = 0.01 and
with T = 2,744. The horizontal gridline marks the 0.99 quantile of the x?
distribution with one degree of freedom, denoted xfo_m = 6.635. It intersects the
plot of the test statistic at the critical values for tests of the null at a confidence level
of 99 percent.

plots the log likelihood ratio test statistic as a function of the number of
excessions for T = 2,744. The number of excessions can only take on non-
negative integer values, so the possible values of the test statistic are marked
by dots. The horizontal grid lines mark the critical region for the 99 percent
confidence level.

Figure 11.8 illustrates the tests at a confidence level of 99 percent. We
can see that the S&P estimate fails the backtest (rejection of £)¢), since
there are 49 excessions. The value of the test statistic is 13.89, exceed-
ing the upper critical value of 6.635. However, at the 95 percent con-
fidence level, there are 141 excessions of the 0.05 quantile (not shown
in Figure 11.8). Of course, these are more numerous than excessions of
the 0.01 quantile, but they amount to 5.14 percent of the observations,
close to the expected 5 percent if the null hypothesis is true. The test
statistic is 0.113, and the critical value is 3.84, so we don’t reject at the
95 percent confidence level.

For USD-JPY, we have 35 excessions and a test statistic value of 1.941,
so we do not reject o at a 99 percent confidence level. There are 130
excessions of the 0.05 quantile, or 4.74 percent of the observations. The
test statistic is 0.399, and the critical value is 3.84, so we don’t reject at the
95 percent confidence level, either.
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FIGURE 11.8 Historical Backtesting

Upper panel: S&P 500 index. There are 49 excessions or 1.79 percent of the
sample size. The null is rejected at the 99 percent confidence level.

Lower panel: USD-JPY exchange rate. There are 35 excessions or 1.28 percent
of the sample size. The null is not rejected at the 99 percent confidence level.
Both panels display return data from January 2, 1996, through November 10,
2006.

Source: Bloomberg Financial L.P.

There are a number of related tests that are discussed in the references
at the end of the chapter. One similar test, for example, is based on the
same model but exploiting the fact that in the model, the time to the first
excession is a random variable with a known distribution.
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11.3 COHERENCE OF VAR ESTIMATES

VaR has been criticized on the grounds that it cannot be grounded axiomat-
ically and therefore lacks scientific underpinning. This is often stated as the
notion that VaR is not a coberent risk measure.

To explain what coherence means, we need to explain the general idea
of a risk measure as a function. As in other areas of finance theory, we
start by defining a finite set  of I possible future states of the world. We
can think of the return on a portfolio as a random variable X defined on
Q and call the set of all possible random returns X the risk set, denoted
. We can think of the X as portfolio returns; the important point here is
that each X € & is a random variable with I possible outcomes. Now we
can define a risk measure p : & — R as a particular method for assigning a
“single-number” measure of risk to a portfolio.

The risk measure p is called coherent if it has the following
properties:

Monotonicity. If X, Y € &, X > Y, then
p(X) < p(Y)

The notation X > Y means that the value of X is at least as great
as that of Y in every state w € Q. The property means that if one
portfolio never has a smaller return than another, it must have a
smaller risk measure.

Homogeneity of degree one. For any X € & and any positive number
b, we have

p(hX) = hp(X)

If you just double all the positions in a portfolio, or double the return
for each outcome, the risk measure of the new portfolio must also
double. Appendix A.6 explains what homogeneous functions are.
We use this property in defining risk capital measures in Chapter 13.

Subadditivity. X, Y, X+Y € & = p(X+Y) < p(X) + p(Y)

A portfolio consisting of two subportfolios can have a risk measure
no greater, and possibly lower, than the sum of the risk measures
of the two subportfolios. In other words, you can’t reduce the risk
by breaking a portfolio into pieces and measuring them separately.
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Translation invariance. Let r represent the risk-free return, and let
a be an amount invested in the risk-free security. Then for X € &,
a € R we have

p(X+a-r)=p(X)—a

This property means that adding a risk-free return equal to a - 7 to
every possible outcome for a portfolio reduces its risk by a. In other
words, adding cash to a portfolio doesn’t essentially change its risk
measure; it does, however, add a capital buffer against losses and
reduces the risk measure by that amount.

An additional axiom is not part of the definition of coherence of a risk
measure:

Relevance. If X € &, X <0, then
p(X) > 0

This property says that if a portfolio’s return is never positive, and
is negative in at least one state w € €, the risk measure must be
positive. It guarantees that really bad portfolios have a large risk
measure.

VaR does not have the subadditivity property. There are cases in which
the VaR of a portfolio is greater than the sum of the VaRs of the individ-
ual securities in the portfolio. We provide a market risk and a credit risk
example.

Example 11.1 (Failure of Subadditivity of VaR) A classic counterexample
to subadditivity is a portfolio consisting of two one-day options: a short out-
of-the-money put and a short out-of-the-money call. We assume logarithmic
returns on the underlying security are normally distributed with a known
drift and volatility.

The options expire tomorrow, so the P&L of each is equal to the accrual
of a one-day option premium less tomorrow’s intrinsic value if the option
expires in-the-money. The options are so short-dated that there is no trading
P&L from vega. We set the exercise price of each option so that its overnight,
99 percent VaR is barely zero. To do so, we need to set the exercise prices
so there is a 1 percent probability of ending slightly in-the-money or better.
Then the terminal intrinsic value lost exactly offsets or exceeds the option
premium or time decay earned. For the put we find the exercise price X
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such that

P[S;. < X1 — p(St, 7, Xi, 0,71, q:)] = 0.01
and for the call we set X5 such that

P[Sii: < X0+ ¢S, 7, X5, 0,7, 9:)] =0.99

The notation and parameters for the example are

Initial underlying price S, =100

VaR confidence level is set at 99 percent 2, = —2.33

Time horizon of the VaR and the option maturity 7 = 55

Underlying security’s volatility o =0.30

Overnight risk-free rate r, = 0.03

Underlying security’s dividend or cash-flow rate g, = 0.00

Put exercise price X; =95.6993

Call exercise price X, = 104.4810

Put fair value at time ¢ p(Ss, T, X1, 0,7, q;) = 0.00615
Call fair value at time ¢ (S, T, X5,0,7,9) =0.00680

The premium of the options is negligible, since they are so far out-of-the-
money and close to expiry. If the put (call) exercise price were any lower
(higher), the VaR would be zero at a higher confidence level.

Now consider the portfolio consisting of both options. The probability
that at least one of the options will end in-the-money enough to incur a loss
is close to 2 percent, so the 99 percent VaR of the portfolio is not zero, but
a positive number. Figure 11.9 illustrates. The two-tailed 99 percent con-
fidence interval for the portfolio has endpoints that are considerably deeper
in-the-money than the one-tailed VaR of each option. There is a 1 percent
probability, for the portfolio, of an outcome at one of these endpoints or
worse.

This example shows that cases in which VaR is not subadditive are uncom-
mon, but not pathological. One would not expect to observe violations of
subadditivity frequently, but they do crop up.

The practical effect of a phenomenon like this is that it creates an avenue
for market participants to game a system of VaR limits, position size limits
that are based on VaR. A bank in which proprietary option trading is
carried out could reduce the VaR it reports, and thus its regulatory capital,
by separating the two options into two different “departments” and adding
them, rather than reporting the higher consolidated VaR. But in practice, it
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FIGURE 11.9 Failure of Subadditivity

The initial underlying price is 100.

Upper panel: One-day probability distribution of the underlying asset price.
Lower panel: Terminal P&L of the option portfolio. The intersection of the
horizontal grid line at 0 with the P&L function shows the exercise prices at which
each option individually breaks even with a probability of 1 percent.

The vertical grid lines mark the 99 percent confidence interval.

is unlikely that enough such anomalies could be found to have a meaningful
impact.

While VaR as a measure of diversification appears unambiguously mis-
leading in the option example, it may make more sense in others. Let’s look
at the apparently similar example of a credit portfolio.
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Example 11.2 (Non-Subadditivity of Credit VaR) Suppose we have a set
of one-year corporate bonds that pay a credit spread of 200 basis points.
Let the risk-free rate be close enough to zero that it has little effect. The
bonds will trade at approximately S; = 0.98 dollars per dollar of par value.
Let the issuers each have a default probability just under 1 percent, say, 99
basis points; defaults are independent. If there is no default, the bonds are
redeemed at par, and if a default occurs, recovery is zero.

We’ll look at the one year, 99 percent credit VaR of three possible
portfolios, each with a current market value of $98:

1. $98 invested in one bond. The distribution of one-year net returns, in
dollars, on this portfolio is

2 0.9901

0—98 Z{—98} Wb {0.0099}

{ 100 — 98 }
Since a capital loss occurs with a probability less than 1 percent, the 99
percent VaR is zero.
2. $49 invested in each of two different bonds. The distribution of returns
on this portfolio is

100 — 98 2 0.980298
50-98 ¢ =4 —48 w.p. 0.019604

0—-98 -98 0.000098

The 99 percent VaR is $48.
3. A highly granular portfolio consisting of tiny amounts invested in each
of very many bonds with independent defaults, totalling $98. There is

no material risk in this portfolio. It has a virtually certain return of
$1.01, and its VaR is zero.

Subadditivity is violated, because diversifying the portfolio from one to
two bonds increases the VaR massively.

But there is more to this example than meets the eye. Is the second portfolio
really better for the investor? Suppose the investor is a pension fund and
will be unable to meet its pension liabilities if it suffers a capital loss of $48
or more. It is actually worse off with the second, “diversified” portfolio,
because there is nearly a 2 percent probability of such a loss, even though
the probability of a $98 loss is now less than 1 basis point. With the single-
bond portfolio, the probability of a catastrophic loss is only 99 basis points.
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Some investors may have good reasons to be concerned with the probability
as well as the size of a catastrophic loss.

FURTHER READING

Model risk is defined and discussed in Derman (1996, 2009). Crouhy, Mark,
and Galai (2000b) is a textbook with an extensive treatment of model risk.
See Plosser (2009) for discussion of some recent model risk episodes.

Important critiques of VaR include Danielsson (2002, 2008). Studies of
variation in the implementation of VaR estimates include Beder (1995) and
Marshall and Siegel (1997). Pritsker (1997) is worth reading as a survey of
VaR techniques, as a study of the variability of VaR estimates, and as an
approach to accuracy and backtesting of VaR.

Correlation trading is discussed in Collin-Dufresne (2009). See Coudert
and Gex (2010) and Finger (2005) on the 2005 credit market episode. The
references on credit correlation concepts at the end of Chapter 9 are also
germane here.

Backtesting of VaR is discussed in Kupiec (1995b), Jorion (1996b), and
Lopez (1999). Berkowitz (2001) proposes an approach to model testing that
takes fat-tailed distributions and the potential for large losses into account.
Kuester, Mittnik and Paolella (2006) employs backtesting of VaR as a means
of testing volatility forecasting models. Berkowitz and O’Brien (2002) use
supervisory data on bank P&L, rather than specified portfolios, to test the
performance of VaR models empirically. See also Hendricks (1996).

Artzner, Delbaen, and Heath (1999) and Acerbi and Tasche (2002)
discuss the concept of coherent risk measures.



